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Abstract—Climate change and sea level rise impacts will affect
coastal communities with multiple threats, including increased
frequency of compound events, such as storm surge combined
with heavy precipitation. Accurately modeling how the stakehold-
ers, such as governments and residents, may respond to sea level
rise scenarios (i.e., scenario planning) can assist in the creation
of policies tailored to local impacts and resilience strategies. In
this paper, our contributions are twofold. Firstly, considering a
single-agent model for government, we numerically show that
the government’s policy on infrastructure improvement should
be based on the observed sea levels rather than the observed
cost from nature. The latter refers to the straightforward policy
that any responsive (but not proactive) government would follow.
Through a reinforcement learning algorithm based on a Markov
decision process model we show that the precautionary measures,
(i.e., infrastructure improvements triggered by the sea levels)
are more effective in decreasing the expected cost than the
aftermath measures triggered by the cost from nature. Secondly,
to generate different scenarios we consider several sea level
rise projections by NOAA, and model different government
and resident prototypes using cooperation indices in terms of
being responsive to the sea level rise problem. We present a
reinforcement learning algorithm to generate simulations for a
set of scenarios defined by the NOAA projections and cooperation
indices.

I. INTRODUCTION

Global climate change and its impacts, in terms of sea
level rise, have been extensively documented, analyzed and
projected [1]–[3]. Climate change and sea level rise impacts
will affect coastal communities with multiple threats, including
increased frequency of compound events - such as storm
surge combined with heavy precipitation [4]. This exacerbates
social vulnerability, particularly in underserved communities
[5], [6]; stresses coastal ecosystems [7], [8]; and impacts local
economies by affecting property values, the tax base, and the
cost of insurance, among other factors [9]. Because of sea
level rise, coastal communities are vulnerable to many of these
impacts, and must build the adaptive capacity and resilience
frameworks to respond to these stressors through effective
decision support and planning [10].

Overall, better information is needed for governments, plan-
ners, coastal managers, and personnel in a variety of agencies
for effective communication, decision making and adaptation
planning [10], [11]. This requires the participation of key
actors to communicate the science, the variability, and the risk
of various scenarios to stakeholders [12]. Accurately modeling
how these agents may respond to sea level rise scenarios
can assist in the creation of policies tailored to local impacts
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and resilience strategies, and requires a variety of community
engagement and planning tools, including scenario planning
[13]–[15].

Reinforcement learning (RL) provides a suitable theoretical
framework for generating agent-based scenarios [16]. The RL
agent interacts with the environment by taking an action at
each time and receiving a cost/reward from the environment
in return. The objective of the agent is to minimize/maximize
an expected sum of costs/rewards over time by choosing
optimal actions from an action set. At each time, as a result of
agent’s action, the system moves to a new state according to
a probability distribution. The optimal policy for deciding on
actions maps system states to actions, i.e., determines which
action to take in which state [17].

In this paper, we consider a city setup with government as
the decision maker (i.e., RL agent), and nature and residents as
the environment which the agent interacts with. Our contribu-
tions are twofold. Firstly, considering a single-agent model for
government, we numerically show that a rational government’s
policy on infrastructure improvement should be based on the
observed sea levels rather than the observed cost from nature.
The latter is the straightforward policy that any responsive (but
not proactive) government would follow. Through simulations
we show that the precautionary measures, (i.e., infrastructure
improvements triggered by the sea levels) are more effective
in decreasing the total cost than the aftermath measures, (i.e.,
infrastructure improvements triggered by the cost from nature).
Secondly, to generate different scenarios we consider several
sea level projections by National Oceanic and Atmospheric
Administration (NOAA), and model different government and
resident prototypes using cooperation indices in terms of being
responsive to the sea level rise problem. The optimum policy
depends on these cooperation indices, and can be found using
reinforcement learning techniques. We present a reinforcement
learning algorithm to generate simulations for a set of scenar-
ios defined by the NOAA projections and cooperation indices.

The remainder of the paper is organized as follows. In Sec-
tion II, the proposed RL model is explained. A reinforcement
learning algorithm for finding the optimal policy is presented
in Section III. Scenario simulations are given in Section IV,
and the paper is concluded in V.

II. RL PROBLEM FORMULATION

We investigate the problem of when to invest in infras-
tructure improvement against sea level rise, e.g., storm water
drainage system, sea wall, levee, etc. Hence, at every time
step, e.g., a year, government makes a decision xn = 1
(invest) or xn = 0 (no invest) for infrastructure improvement.



Fig.1. Proposed MDPmodel.

Accordingly,thecurrentstateofthecityinfrastructureagainst
sealevelriseisgivenbysn =

n
m=1 xm = sn 1+xn.

Denotingthesealevelriseintimeintervalnwithrn≥0the
sealevelissimilarlygivenby n =

n
m=1 rm = n 1+rn.

Wedefinethesystemstate S =(sn,n)asthepairof
infrastructurestateandsealevel, whichclearlysatisfiesthe
Markovproperty: P(Sn|Sn 1,...,S0)=P(Sn|Sn 1).

Letusdenotethecostfromnatureateachtimestepwith
zn,e.g.,thecostofflooding,stormsurge,hurricane,etc.
Alsodenote with yn theresponseofresidentsateachtime
step.Inthis work, weuseabinaryresponseyn ∈{0,1}
fortheresidentsconsideringtheresidents’decisiontosupport
(yn =1)ornot(yn =0)thegovernment’sinvestmentfor
handlingthesealevelriseproblem,e.g.,bypayinganextra
tax.Inthiswork,weinvestigategovernment’sdecisionunder
sealevelrisescenariosusingasingle-agent RL model.In
thiscontext,agentreferstothegovernment,andenvironment
referstothenatureandresidentstogether. Theresponses
xn,yn,zn ofgovernment,residents,andnature,respectively,
togetherdefinetheagent’scostcn=(2−yn)xn+zn ateach
timen.Thiscostisnormalizedbytakingtheinvestmentcost
(2−yn)xn aunitcost withtheresidentsupport(twounits
withouttheresidentsupport).Thesecondcomponent zn is
thenormalizedcostfromnaturewithrespecttotheinvestment
cost.Finally,thecumulativecostfunctionfortheagentisgiven
by

CN =

N

n=0

an
g[(2−yn)xn+zn], (1)

whichrepresentsthetotaldiscountedcostinNtimestepsfrom
now.Thediscountfactorag ∈(0,1)determinestheweight
(i.e.,importance)offuturecostsinagent’sdecisions.Aside
frombeingastandardparameterinRLcostfunction,ag has
animportantcontextual meaninginthis work.Itrepresents
howmuchthegovernmentvaluesthefuturecostsduetothe
sealevelriseprobleminitsdecisionmakingprocess.Hence,
wecallaggovernment’scooperationindex.

Theagent’sobjectiveisto minimizeE[CN]bychoosing
itsactions{xn}overtime.Thisdefinesa MarkovDecision
Process(MDP),assummarizedinFig.1.Everytimeagent
takesanactionxn,environmentreactstothatbyincurring
acostcn.Consideringdiscretizedsealevelrisevalues̃rn ∈
{0,1,2,...}thestatetransitiondiagramisgivenbyFig.2.
Inourproblem,environmentconsistsofnatureandresidents.

Fig.2. MDPstatetransitiondiagram.

Fig.3. NOAAprojections(solidlines)forSt.Petersburg,FL[18],andour
curvefitting(dashedlines)fortheexpectationofGammadistribution.

Wenextdiscusssuitable modelsforthemtocompletethe
proposed MDPmodel.

Tomodelnature’scostwestartwithfourdifferentNOAA
projectionsforsealevelriseinSt.Petersburg,FL[18],given
byFig.3.Sincethesearesomeexpectedlevels,inoursimu-
lationsweaccountforuncertaintyby modelingthesealevel
risevariableusingaGammadistribution,rn∼Gamma(α,β).
Weset β = 0.5andα to matchE[n]withthe NOAA
projectioncurves.ThesuccessfulcurvefittingshownFig.3is
obtainedbysettingα=5.2fixedforthelowprojection;by
increasingαfrom6.3to16.596with0.104incrementsforthe
intermediate-lowprojection;byincreasingαfrom9.5to42.17
with0.33incrementsfortheintermediate-highprojection;and
byincreasingαfrom14to69.44with 0.56incrementsfor
thehighprojection.Then, we modelnature’scostzn using
theGeneralizedParetodistribution,whichiscommonlyused
to modelcatastrophiclosses[19].Theparametersettingsfor
zn aregivenas

zn∼GeneralizedPareto(k,σn,θ)

k=−0.001,θ=0,σn=
η(n 1)a

(sn 1)b
. (2)

Throughtheparametersη,a,bwecontroltheimpactofmost
recentsealeveln 1overnature’scostzn relativetothemost



recentinfrastructurestatesn 1.
Residents’decisionyn is modeledusingBernoullidistri-

bution withprobabilityparameterdesignedthroughlogistic
sigmoidfunction:

yn∼Bernoulli(pn),pn=σ(qn)=
1

1+e(qn q0)

qn=
n 1

m=1

an m
r xmzm, (3)

wherethescoreqnreflectsthewillingnessofresidentstoshare
government’sinvestmentcostsbasedonthecooperationindex
ar∈(0,1).Ittakesahighvalue,andyieldsahighprobability
ofsupportiftheresidents’cooperationindexishigh(ar≈1),
nature’scosthasbeenseriousandthegovernmenthasbeenre-
sponsiveespeciallyrecently.Ifatleastoneoftheseconditions
donotexist,thenqn tendstogetsmallervalues,decreasing
theprobabilityofsupport.Anaveragevalueforqn isusedfor
thesigmoid’smidpointq0.

III.FINDINGTHEOPTIMALPOLICY

RLprovidesadata-drivensolutiontoMDPproblems.Ittyp-
icallyupdatesavaluefunctionV(sn,n)=minxn E[CN|xn]
inaniterativewaybasedontheBellmanequation

V(sn 1,n 1)=min
xn

E[cn+V(sn,n)|xn,yn]

=min{zn+agV(sn 1,n),

2−yn+zn+agV(sn 1+1,n)}. (4)

ThevaluefunctionV(sn,n)definestheoptimalpolicy:

xn=1 if2−yn+agV(sn 1+1,n)<agV(sn 1,n),
xn=0 otherwise.

(5)
AlthoughthereareseveralRLalgorithms,ingeneraltheRL
approachlearnsthevaluefunctionbyexperiencingactions
andthecorrespondingcosts.In Algorithm1, weprovide
anRLalgorithmbasedon Monte-Carlosimulationstolearn
theoptimalgovernmentpolicyoninfrastructureinvestment
actions.

Algorithm1RLalgorithmforlearningoptimumpolicy

1:Input:ag,ar,Returns(s,):anarraytosavestates’returns
inalliterations;

2:Initialize:V(s,)← 0,∀s,;
3:foriteration=0,1,2,...do
4: Generateanepisode:Takeactionsusing(5)forN steps
5: G(s,)← sumofdiscountedrewardsfrom(s,)till

terminationforallstatesappearingintheepisode;
6: AppendG(s,)toReturns(s,);
7: V(s,)← average(Returns(s,));
8: ifV(s,)convergesforalls, then
9: break

10: endif
11:endfor

Algorithm1runsseveralepisodestoiterativelycomputethe
valuefunctionV(s,)forallfeasiblestates.Eachepisodeis

Fig.4. ConvergenceofvaluefunctionV(s,)inAlgorithm1fortheNOAA’s
intermediate-lowprojection.

a Monte-Carlosimulationinwhichseveralstatesarevisited
accordingtothecurrentpolicydefinedbythecurrentvalue
function.Attheendofeachepisodethevaluesofvisitedstates
areupdatedusingthereturn,i.e.,totaldiscountedcostfroma
stateuntiltermination,fromthesestates.Afterthestatevalues
converge,thefinalstatevaluesareusedforgeneratingscenario
simulations,asdescribedinthenextsection.Theconvergence
ofAlgorithm1isillustratedinFig.4.

IV.SCENARIOSIMULATIONS

Inthissection, wepresentsimulationresultsforseveral
sealevelrisescenarios.To matchthecostduetohurricanes
eachyearthatisreportedin[20],wechoosetheparameters
η=2,a=0.4,b=0.5in(2)forthenature model. We
obtaindifferentscenariosbyvaryingthecooperationindices
agandarforthegovernmentandresidents,respectively,and
byconsideringdifferentNOAAprojectionsforsealevelrise.

Fig.4showstheconvergenceofthestatevaluesV(s,)
inAlgorithm1consideringtheNOAAint-lowprojection.For
eachscenario,oncetheconvergedstatevaluesarefound,the
resultantoptimalpolicyisusedtoassessthecostoftheRL-
basedgovernment. Notethatthe RL-basedgovernmentis
proactiveindealingwiththesealevelriseproblemasitmon-
itorsthesealevelstatetogetherwiththeinfrastructurestate,
andtakesprecautionary measuresbyimprovingtheinfras-
tructurewhenevertheexpectedfuturecostofnotimproving
exceedstheimprovementcost.Considerareactive/responsive
real-worldgovernmentthatfollowsastraightforwardpolicyby
improvinginfrastructureafterexperiencingasignificantcost
fromthenature.

InFig.5, wecomparetheoptimal RLpolicy withthis
straightforwardpolicyintermsofaveragetotalcostin100
yearsforthelowandhighNOAAsealevelprojections.Itis
seenthat withthesamenumberofinvestmentsonaverage
theproactivepolicythatactsaccordingtothesealeveland
infrastructurestateinsteadoftheultimatecostfromnature
greatlyreducesthetotalcostforthegovernment.



Fig. 5. Optimum policy vs. straightforward policy in terms of average total cost in 100 years for the low (left) and high (right) NOAA sea level rise projections.

Fig. 6. Average total cost as a function of government cooperation index ag
for different resident cooperation indices ar for NOAA high SLR projection.

Finally, in Fig. 6, we analyze the effect of cooperation
indices. As expected, the average total cost decreases with
growing cooperation index for both the government (ag) and
residents (ar). The cost is more than doubled if both the
government and residents are not cooperative (ag = ar = 0.1)
compared to the full cooperative case (ag = 1, ar = 0.9).

V. CONCLUSIONS

In this paper, we presented a proactive government model
for the sea level rise problem in a city environment considering
the impacts from nature and residents. The proactive govern-
ment, which learns the optimal infrastructure investment policy
(yes or no at each time step) through reinforcement learning
to minimize the expected economic cost over time, monitors
the sea level state together with the infrastructure state, and

makes an infrastructure investment to alleviate the effects
of sea level rise problem whenever the expected future cost
of no investment exceeds the immediate cost of investment.
This proactive strategy was shown to greatly outperform the
straightforward investment policy which improves the infras-
tructure in the aftermath of a serious economic cost from the
nature. We also demonstrated that the average total cost can be
significantly reduced as the government and residents become
more cooperative in addressing the sea level rise problem.
For the sea level rise amounts over time, different NOAA
projections are considered.
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